

Welcome to PyMarket’s documentation!

PyMarket is a python library designed to ease the simulation and
comparison of different market mechanisms.

Marketplaces can be proposed to solve a diverse array of problems. They
are used to sell ads online, bandwith spectrum, energy, etc.
PyMarket provides a simple environment to try, simulate and compare different
market mechanisms, a task that is inherent to the process of establishing a new
market.

As an example, Local Energy Markets (LEMs) have been proposed to syncronize energy consumption
with surplus of renewable generation. Several mechanisms have been proposed for such a market:
from double sided auctions to p2p trading.

This library aims to provide a simple interface for such process, making results reproducible.

Contents:

	Installation

	Getting started

	Examples

	pymarket

	Contributing

	Credits

	References

Indices and tables

	Index

	Module Index

	Search Page

Installation

Stable release

To install pymarket, run this command in your terminal:

First check your Python version, PyMarket requires Python 3.5.2 or newer.

$ python --version

Verify that pip is installed

$ python -m pip --version

You can proceed to install PyMarket with the following command (the –user flag is optimal but recommended).

$ python -m pip install pymarket --user

This is the preferred method to install pymarket, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

Warning

Python ` >=3.5.2 ` is required. PyMarket won’t run with Python 2 nor previous versions of Python 3.

Dependencies

	PyMarket has been tested in Ubuntu 16.04, Ubuntu 18.04, Manjaro 18.1.1 and mac OS 10.14.4 (through travis only).

	PyMarket does not require additional dependencies outside for those specified in the requeriments.txt file. Nevertheless,
PulP might benefit from having access to additional solvers such as CPLEX (not required).

From sources

The sources for pymarket can be downloaded from the Github repo [https://github.com/gus0k/pymarket].

You can either clone the public repository:

$ git clone git://github.com/gus0k/pymarket

Or download the tarball [https://github.com/gus0k/pymarket/tarball/master]:

$ curl -OL https://github.com/gus0k/pymarket/tarball/master

Installing from source requires additional dependencies:

$ apt-get install --yes pkg-config
$ apt-get install --yes libfreetype6-dev
$ apt-get install --yes libpng12-dev
$ python -m pip install 'setuptools>=27.3' --user

Once you have a copy of the source, you can install it with:

$ python setup.py install

Running Tests

To run the tests an additional dependency is needed. It can be installed by running:

$ python -m pip install pytest --user

Test can be run from the main directory of the project by running:

$ python -m pytest

Getting started

[1]:

import pprint

Standard imports

[15]:

import numpy as np
import pandas as pd
import pymarket as pm

import pprint

We begin by creating an instance of a market, the basic interface for all mechanisms.

[16]:

mar = pm.Market() # Creates a new market

A market accepts buying and selling bids. The standard format of a bid is

\[bid = (quantity, price, userId, isBuying)\]

A buying bid can be interpreted as follows: \(userId\) is willing to buy any fraction of \(quantity\) at price \(price\) or lower.

A selling bid can be interpreted as follows: \(userId\) is willing to sell any fraction of \(quantity\) at price \(price\) or higher.

Submitting two bids in the market

Each bid gets a unique identifier within the market when it is accepted. That value is returned by the market after accepting the bid.

[17]:

mar.accept_bid(1, 2, 0, True) # User 0 want to buy (True) 1 unit at price 2

[17]:

0

[18]:

mar.accept_bid(2, 1, 1, False) # User 1 wants to sell (False) 2 units at price 2

[18]:

1

The bids dataframe

All bids are stored in a BidManager (bm). The bid manager can return a pandas DataFrame describing all available bids.

[19]:

mar.bm.get_df()

[19]:

 Examples

Examples

Contents:

	P2P

	MUDA

	Huang

	Efficiency and Performance

	Creating a new mechanism

 P2P

P2P

[3]:

%matplotlib inline
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import networkx as nx
import pymarket as pm

Creates new market

[4]:

r = np.random.RandomState(1234)
mar = pm.Market()

mar.accept_bid(1, 6.7, 0, True, 0)
mar.accept_bid(1, 6.6, 1, True, 0)
mar.accept_bid(1, 6.5, 2, True, 0)
mar.accept_bid(1, 6.4, 3, True, 0)
mar.accept_bid(1, 6.3, 4, True, 0)
mar.accept_bid(1, 6, 5, True, 0)

mar.accept_bid(1, 1, 6, False, 0)
mar.accept_bid(1, 2, 7, False, 0)
mar.accept_bid(2, 3, 8, False, 0)
mar.accept_bid(2, 4, 9, False, 0)
mar.accept_bid(1, 6.1, 10, False, 0)

bids = mar.bm.get_df()
transactions, extras = mar.run('p2p', r=r)
stats = mar.statistics()

[5]:

bids # bids dataframe

[5]:

 MUDA

MUDA

[1]:

%matplotlib inline
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import networkx as nx
import pymarket as pm

Creates new market

[2]:

r = np.random.RandomState(1234)
mar = pm.Market()

mar.accept_bid(1, 6.7, 0, True, 0)
mar.accept_bid(1, 6.6, 1, True, 0)
mar.accept_bid(1, 6.5, 2, True, 0)
mar.accept_bid(1, 6.4, 3, True, 0)
mar.accept_bid(1, 6.3, 4, True, 0)
mar.accept_bid(1, 6, 5, True, 0)

mar.accept_bid(1, 1, 6, False, 0)
mar.accept_bid(1, 2, 7, False, 0)
mar.accept_bid(2, 3, 8, False, 0)
mar.accept_bid(2, 4, 9, False, 0)
mar.accept_bid(1, 6.1, 10, False, 0)

bids = mar.bm.get_df()
transactions, extras = mar.run('muda', r=r)
stats = mar.statistics()

Orignal supply and demand curves

[3]:

mar.plot()

[image: _images/MUDA_5_0.png]

Supply and demand curves after market is splitted

[4]:

ax = mar.plot_method('muda')

[image: _images/MUDA_7_0.png]

Analysis of the Left Side

Participants

	Buying: 1, 3, 4

	Selling: 7, 8, 9

Trading price

	\(6.3\)

Results

	The long side is the supply, all demand side buys as much as they want

	The demand side pays no fees, they are the short side

	Bid 7, results in bid 9 not trading a unit, so the fee is $ 1 :nbsphinx-math:`times `(6.3 - 4) = 2.3$

	Bid 8, results in bid 9 not trading a 2 units so the fee is \(2 \times (6.3 - 4) = 4.6\)

Analysis of the Right Side

Participants

	Buying: 0, 2, 5

	Selling: 6, 10 (10 does not trade because bid price is greater than trading price)

Trading price

	4.65

Results

	The long side is the demand, all supply side buys as much as they want

	The supply side pays no fees, they are the short side

	Bid 0, results in bid 2 not trading a unit, so the fee is $ 1 :nbsphinx-math:`times `(6.5 - 4.65) = 1.85$

Statistics

[5]:

print('Percentage of the maximum possible traded quantity')
stats['percentage_traded']

Percentage of the maximum possible traded quantity

[5]:

0.6666666666659999

[6]:

print('Percentage of the maximum possible total welfare')
stats['percentage_welfare']

Percentage of the maximum possible total welfare

[6]:

0.7906976744186046

[7]:

print('Profits per user')
for u in bids.user.unique():
 print(f'User {u:2} obtained a profit of {stats["profits"]["player_bid"][u]:0.2f}')

Profits per user
User 0 obtained a profit of 2.05
User 1 obtained a profit of 0.30
User 2 obtained a profit of 0.00
User 3 obtained a profit of 0.10
User 4 obtained a profit of 0.00
User 5 obtained a profit of 0.00
User 6 obtained a profit of 3.65
User 7 obtained a profit of 4.30
User 8 obtained a profit of 6.60
User 9 obtained a profit of 0.00
User 10 obtained a profit of 0.00

[8]:

print(f'Profit to Market Maker was {stats["profits"]["market"]:0.2f}')

Profit to Market Maker was 8.75

[]:

 Huang

Huang

[2]:

%matplotlib inline
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import networkx as nx
import pymarket as pm

Creates new market

[4]:

mar = pm.Market()

mar.accept_bid(1, 6.7, 0, True, 0)
mar.accept_bid(1, 6.6, 1, True, 0)
mar.accept_bid(1, 6.5, 2, True, 0)
mar.accept_bid(1, 6.4, 3, True, 0)
mar.accept_bid(1, 6.3, 4, True, 0)
mar.accept_bid(1, 6, 5, True, 0)

mar.accept_bid(1, 1, 6, False, 0)
mar.accept_bid(1, 2, 7, False, 0)
mar.accept_bid(2, 3, 8, False, 0)
mar.accept_bid(2, 4, 9, False, 0)
mar.accept_bid(1, 6.1, 10, False, 0)

bids = mar.bm.get_df()
transactions, extras = mar.run('huang')
stats = mar.statistics()

Orignal supply and demand curves

[5]:

mar.plot()

[image: _images/Huang_5_0.png]

Supply and demand curves after market is splitted

[11]:

fig, ax = plt.subplots(figsize=(8, 6))
ax = mar.plot_method('huang', ax=ax)

[image: _images/Huang_7_0.png]

Analysis of the trade

Trading price

	Selling Price: 4, defined by bid 9, consequently, 9 does not trade

	Buying Price: 6, defined by bid 5, consequently, 5 does not trade

Actually trading

	Buying: 0, 1, 2, 3

	Selling: 6, 7, 8

Results

	Supply and demand have the same size.

	The profit of the market maker coincides with the blue shaded area

Statistics

[7]:

print('Percentage of the maximum possible traded quantity')
stats['percentage_traded']

Percentage of the maximum possible traded quantity

[7]:

0.6666666666659999

[8]:

print('Percentage of the maximum possible total welfare')
stats['percentage_welfare']

Percentage of the maximum possible total welfare

[8]:

0.4186046511627907

[9]:

print('Profits per user')
for u in bids.user.unique():
 print(f'User {u:2} obtained a profit of {stats["profits"]["player_bid"][u]:0.2f}')

Profits per user
User 0 obtained a profit of 0.56
User 1 obtained a profit of 0.48
User 2 obtained a profit of 0.40
User 3 obtained a profit of 0.32
User 4 obtained a profit of 0.24
User 5 obtained a profit of 0.00
User 6 obtained a profit of 3.00
User 7 obtained a profit of 2.00
User 8 obtained a profit of 2.00
User 9 obtained a profit of 0.00
User 10 obtained a profit of 0.00

[10]:

print(f'Profit to Market Maker was {stats["profits"]["market"]:0.2f}')

Profit to Market Maker was 8.00

[]:

 Efficiency and Performance

Efficiency and Performance

[1]:

%matplotlib inline
import time
import pymarket as pm
import numpy as np
import matplotlib.pyplot as plt

Create a set of markets with varying number of participants

[41]:

markets = []
range_players = np.arange(20, 200, 20)
M = len(range_players)

for i in range_players:
 bids = pm.datasets.generate(i, i, 2, 1)
 mar = pm.Market()
 for b in bids:
 mar.accept_bid(*b)
 markets.append(mar)

Run the diferent markets

[42]:

elapsed = np.zeros(M)
for i in range(M):
 mar = markets[i]
 start = time.time()
 mar.run('huang')
 stop = time.time()
 elapsed[i] = stop - start

[43]:

fig, ax = plt.subplots()
ax.plot(range_players, elapsed)
_ = ax.set_xlabel('Number of Players')
_ = ax.set_ylabel('Elapsed Time (s)')
_ = ax.set_title('Performance')

[image: _images/Efficiency_and_performance_6_0.png]

Obtains the statistics (optimization problems have to be solved)

[49]:

traded = np.zeros(M)
welfare = np.zeros(M)
stats_time = np.zeros(M)

limit = M
for i in range(limit):
 mar = markets[i]
 start = time.time()
 stats = mar.statistics()
 stop = time.time()
 stats_time[i] = stop - start
 welfare[i] = stats['percentage_welfare']
 traded[i] = stats['percentage_traded']

Plots the results

[51]:

fig, ax = plt.subplots(1, 3, figsize=(18, 6))

ax[0].plot(range_players[:limit], stats_time[:limit])
ax[0].set_ylabel('Elapsed Time (s)')

ax[1].plot(range_players[:limit], welfare[:limit])
ax[1].set_ylabel(' % Total welfare')

ax[2].plot(range_players[:limit], traded[:limit])
ax[2].set_ylabel(' % Total traded')

for ax_ in ax:
 ax_.set_xlabel('Number of Players')

[image: _images/Efficiency_and_performance_10_0.png]

[]:

 Creating a new mechanism

Creating a new mechanism

[1]:

import numpy as np
import pandas as pd
import pymarket as pm
import matplotlib.pyplot as plt
from pprint import pprint

One of the advantages of PyMarket is the ability to easily implement and test a new idea for a mechanism. Here we will show how to implement a new mechanism and use it.

The uniform price mechanism

We are going to implement a uniform price mechanism that charges every trading player the clearing price.

As a reference we are going to be implement the example Here [http://pierrepinson.com/31761/Lectures/31761-Lecture1.pdf]

We can begin by adding the corresponding bids to a new market

[2]:

mar = pm.Market()

buyers_names = ['CleanRetail', 'El4You', 'EVcharge', 'QualiWatt', 'IntelliWatt']

mar.accept_bid(250, 200, 0, True) # CleanRetail 0
mar.accept_bid(300, 110, 1, True) # El4You 1
mar.accept_bid(120, 100, 2, True) # EVcharge 2
mar.accept_bid(80, 90, 3, True) # QualiWatt 3
mar.accept_bid(40, 85, 4, True) # IntelliWatt 4
mar.accept_bid(70, 75, 1, True) # El4You 5
mar.accept_bid(60, 65, 0, True) # CleanRetail 6
mar.accept_bid(45, 40, 4, True) # IntelliWatt 7
mar.accept_bid(30, 38, 3, True) # QualiWatt 8
mar.accept_bid(35, 31, 4, True) # IntelliWatt 9
mar.accept_bid(25, 24, 0, True) # CleanRetail 10
mar.accept_bid(10, 21, 1, True) # El4You 11

sellers_names = ['RT', 'WeTrustInWind', 'BlueHydro', 'KøbenhavnCHP', 'DirtyPower', 'SafePeak']

mar.accept_bid(120, 0, 5, False) # RT 12
mar.accept_bid(50, 0, 6, False) # WeTrustInWind 13
mar.accept_bid(200, 15, 7, False) # BlueHydro 14
mar.accept_bid(400, 30, 5, False) # RT 15
mar.accept_bid(60, 32.5, 8, False) # KøbenhavnCHP 16
mar.accept_bid(50, 34, 8, False) # KøbenhavnCHP 17
mar.accept_bid(60, 36, 8, False) # KøbenhavnCHP 18
mar.accept_bid(100,37.5, 9, False) # DirtyPower 19
mar.accept_bid(70, 39, 9, False) # DirtyPower 20
mar.accept_bid(50, 40, 9, False) # DirtyPower 21
mar.accept_bid(70, 60, 5, False) # RT 22
mar.accept_bid(45, 70, 5, False) # RT 23
mar.accept_bid(50, 100, 10, False) # SafePeak 24
mar.accept_bid(60, 150, 10, False) # SafePeak 25
mar.accept_bid(50, 200, 10, False) # SafePeak 26

[2]:

26

[3]:

12, 15, 22, 23

[3]:

(12, 15, 22, 23)

[4]:

mar.plot()

[image: _images/new_mechanism_8_0.png]

Implementing the mechanism

All market mechanisms take as arguements a bids dataframe (as well as possibly extra parameters) and returns a TransactionManager and an extras dictionary.

[13]:

def uniform_price_mechanism(bids: pd.DataFrame) -> (pm.TransactionManager, dict):

 trans = pm.TransactionManager()

 buy, _ = pm.bids.demand_curve_from_bids(bids) # Creates demand curve from bids
 sell, _ = pm.bids.supply_curve_from_bids(bids) # Creates supply curve from bids

 # q_ is the quantity at which supply and demand meet
 # price is the price at which that happens
 # b_ is the index of the buyer in that position
 # s_ is the index of the seller in that position
 q_, b_, s_, price = pm.bids.intersect_stepwise(buy, sell)

 buying_bids = bids.loc[bids['buying']].sort_values('price', ascending=False)
 selling_bids = bids.loc[~bids['buying']].sort_values('price', ascending=True)

 ## Filter only the trading bids.
 buying_bids = buying_bids.iloc[: b_ + 1, :]
 selling_bids = selling_bids.iloc[: s_ + 1, :]

 # Find the long side of the market
 buying_quantity = buying_bids.quantity.sum()
 selling_quantity = selling_bids.quantity.sum()

 if buying_quantity > selling_quantity:
 long_side = buying_bids
 short_side = selling_bids
 else:
 long_side = selling_bids
 short_side = buying_bids

 traded_quantity = short_side.quantity.sum()

 ## All the short side will trade at `price`
 ## The -1 is there because there is no clear 1 to 1 trade.
 for i, x in short_side.iterrows():
 t = (i, x.quantity, price, -1, False)
 trans.add_transaction(*t)

 ## The long side has to trade only up to the short side
 quantity_added = 0
 for i, x in long_side.iterrows():

 if x.quantity + quantity_added <= traded_quantity:
 x_quantity = x.quantity
 else:
 x_quantity = traded_quantity - quantity_added
 t = (i, x_quantity, price, -1, False)
 trans.add_transaction(*t)
 quantity_added += x.quantity

 extra = {
 'clearing quantity': q_,
 'clearing price': price
 }

 return trans, extra

Wrapping the algorithm as a mechanism

[14]:

Observe that we add as the second argument of init the algorithm just coded
class UniformPrice(pm.Mechanism):
 """
 Interface for our new uniform price mechanism.

 Parameters

 bids
 Collection of bids to run the mechanism
 with.
 """

 def __init__(self, bids, *args, **kwargs):
 """TODO: to be defined1. """
 pm.Mechanism.__init__(self, uniform_price_mechanism, bids, *args, **kwargs)

Adding the new mechanism to the list of available mechanism of the market

[15]:

pm.market.MECHANISM['uniform'] = UniformPrice

Running the new mechanism and comparing it with Huang’s and P2P

[24]:

stats = {}
for mec in ['uniform', 'huang', 'p2p']:
 t, e = mar.run(mec)
 stat = mar.statistics()
 stats[mec] = stat

Profits for the players in the different mechanism

[33]:

profits = pd.DataFrame([v['profits']['player_bid'] for k, v in stats.items()]).T
profits.columns = stats.keys()
profits

[33]:

 pymarket

pymarket

	pymarket package
	Subpackages
	pymarket.bids package
	Submodules

	pymarket.datasets package
	Submodules

	pymarket.mechanisms package
	Submodules

	pymarket.plot package
	Submodules

	pymarket.statistics package
	Submodules

	pymarket.transactions package
	Submodules

	pymarket.utils package
	Submodules

	Submodules
	pymarket.conftest module

	pymarket.market module

 pymarket package

pymarket package

Subpackages

	pymarket.bids package
	Submodules
	pymarket.bids.bids module

	pymarket.bids.demand_curves module

	pymarket.bids.processing module

	pymarket.datasets package
	Submodules
	pymarket.datasets.uniform_bidders module

	pymarket.mechanisms package
	Submodules
	pymarket.mechanisms.huang_auction module

	pymarket.mechanisms.mechanism module

	pymarket.mechanisms.muda_auction module

	pymarket.mechanisms.p2p_random module

	pymarket.plot package
	Submodules
	pymarket.plot.demand_curves module

	pymarket.plot.huang module

	pymarket.plot.muda module

	pymarket.plot.trades module

	pymarket.statistics package
	Submodules
	pymarket.statistics.maximum_aggregated_utility module

	pymarket.statistics.maximum_traded_volume module

	pymarket.statistics.profits module

	pymarket.statistics.statistics module

	pymarket.transactions package
	Submodules
	pymarket.transactions.processing module

	pymarket.transactions.transactions module

	pymarket.utils package
	Submodules
	pymarket.utils.decorators module

Submodules

	pymarket.conftest module

	pymarket.market module

 pymarket.bids package

pymarket.bids package

Top-level package for pymarket.

Submodules

	pymarket.bids.bids module

	pymarket.bids.demand_curves module

	pymarket.bids.processing module

 pymarket.bids.bids module

pymarket.bids.bids module

	
class pymarket.bids.bids.BidManager

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A class used to store and manipulate a collection
of all the bids in the market.

	
col_names

	Column names for the different attributes in the dataframe
to be created. Currently and in order: quantity, price,
user, buying, time, divisible.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str]

	
n_bids

	Number of bids currently stored. Used as a unique identifier
for each bid within a BidManager.

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
bids

	A list where all the recieved bids are stored.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list] of tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
add_bid(quantity, price, user, buying=True, time=0, divisible=True)

	Appends a bid to the bid list

	Parameters

	
	quantity (float [https://docs.python.org/3/library/functions.html#float]) – Quantity of good desired. If divisible=True then any
fraction of the good is an acceptable outcome of the
market.

	price (float [https://docs.python.org/3/library/functions.html#float]) – Uniform price offered in the market for each unit of the the good.

	user (int [https://docs.python.org/3/library/functions.html#int]) – Identifier of the user submitting the bid.

	buying (bool [https://docs.python.org/3/library/functions.html#bool]) – True if the bid is for buying the good and False`otherwise.
Default is `True.

	time (float [https://docs.python.org/3/library/functions.html#float]) – Instant at which the offer was made. This is relevant only if the
market mechanism has perferences for earlier bids. Default is 0

	divisible (bool [https://docs.python.org/3/library/functions.html#bool]) – True is the user accepts a fraction of the asked quantity as
a result and False otherwise.

	Returns

	Unique identifier of the added bid.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

Examples

>>> bm = pm.BidManager()
>>> bm.add_bid(2, 1, 0)
0

	
col_names = ['quantity', 'price', 'user', 'buying', 'time', 'divisible']

	

	
get_df()

	Creates a dataframe with the bids

	Returns

	Dataframe with each row a different bid
and each column each of the different attributes.

	Return type

	pd.DataFrame

Examples

>>> bm = pm.BidManager()
>>> bm.add_bid(2, 1, 0)
0
>>> bm.add_bid(1, 3, 1, buying=False)
1
>>> print(bm.get_df())
 quantity price user buying time divisible
0 2 1 0 True 0 True
1 1 3 1 False 0 True

 pymarket.bids.demand_curves module

pymarket.bids.demand_curves module

	
pymarket.bids.demand_curves.demand_curve_from_bids(bids)

	Creates a demand curve from a set of buying bids.
It is the inverse cumulative distribution of quantity
as a function of price.

	Parameters

	bids – Collection of all the bids in the market. The algorithm
filters only the buying bids.

	Returns

	
	demand_curve (np.ndarray) – Stepwise constant demand curve represented as a collection
of the N rightmost points of each interval (N-1 bids). It is stored
as a (N, 2) matrix where the first column is the x-coordinate
and the second column is the y-coordinate.
An extra point is a))dded with x coordinate at infinity and
price at 0 to represent the end of the curve.

	index (np.ndarray) – The order of the identifier of each bid in the demand
curve.

Examples

A minimal example, selling bid is ignored:

>>> bm = pm.BidManager()
>>> bm.add_bid(1, 1, 0, buying=True)
0
>>> bm.add_bid(1, 1, 1, buying=False)
1
>>> dc, index = pm.demand_curve_from_bids(bm.get_df())
>>> dc
array([[1., 1.],
 [inf, 0.]])
>>> index
array([0])

A larger example with reordering of bids:

>>> bm = pm.BidManager()
>>> bm.add_bid(1, 1, 0, buying=True)
0
>>> bm.add_bid(1, 1, 1, buying=False)
1
>>> bm.add_bid(3, 0.5, 2, buying=True)
2
>>> bm.add_bid(2.3, 0.1, 3, buying=True)
3
>>> dc, index = pm.demand_curve_from_bids(bm.get_df())
>>> dc
array([[1. , 1.],
 [4. , 0.5],
 [6.3, 0.1],
 [inf, 0.]])
>>> index
array([0, 2, 3])

	
pymarket.bids.demand_curves.get_value_stepwise(x, f)

	Returns the value of a stepwise constant
function defined by the right extrems
of its interval
Functions are assumed to be defined
in (0, inf).

	Parameters

	
	x (float [https://docs.python.org/3/library/functions.html#float]) – Value in which the function is to be
evaluated

	f (np.ndarray) – Stepwise function represented as a 2 column
matrix. Each row is the rightmost extreme
point of each constant interval. The first column
contains the x coordinate and is sorted increasingly.
f is assumed to be defined only in the interval
:math: (0, infty)

	Returns

	The image of x under f: f(x). If x is negative,
then None is returned instead. If x is outside
the range of the function (greater than f[-1, 0]),
then the method returns None.

	Return type

	float [https://docs.python.org/3/library/functions.html#float] or None [https://docs.python.org/3/library/constants.html#None]

Examples

>>> f = np.array([
... [1, 1],
... [3, 4]])
>>> [pm.get_value_stepwise(x, f)
... for x in [-1, 0, 0.5, 1, 2, 3, 4]]
[None, 1, 1, 1, 4, 4, None]

	
pymarket.bids.demand_curves.intersect_stepwise(f, g, k=0.5)

	Finds the intersection of
two stepwise constants functions
where f is assumed to be bigger at 0
than g.
If no intersection is found, None is returned.

	Parameters

	
	f (np.ndarray) – Stepwise constant function represented as
a 2 column matrix where each row is the rightmost
point of the constat interval. The first column
is sorted increasingly.
Preconditions: f is non-increasing.

	g (np.ndarray) – Stepwise constant function represented as
a 2 column matrix where each row is the rightmost
point of the constat interval. The first column
is sorted increasingly.
Preconditions: g is non-decreasing and
f[0, 0] > g[0, 0]

	k (float [https://docs.python.org/3/library/functions.html#float]) – If the intersection is empty or an interval,
a convex combination of the y-values of f and g
will be returned and k will be used to determine
hte final value. k=1 will be the value of g
while k=0 will be the value of f.

	Returns

	
	x_ast (float or None) – Axis coordinate of the intersection of both
functions. If the intersection is empty,
then it returns None.

	f_ast (int or None) – Index of the rightmost extreme
of the interval of f involved in the
intersection. If the intersection is
empty, returns None

	g_ast (int or None) – Index of the rightmost extreme
of the interval of g involved in the
intersection. If the intersection is
empty, returns None.

	v (float or None) – Ordinate of the intersection if it
is uniquely identified, otherwise
the k-convex combination of the
y values of f and g in the last
point when they were both defined.

Examples

Simple intersection with diferent domains

>>> f = np.array([[1, 3], [3, 1]])
>>> g = np.array([[2,2]])
>>> pm.intersect_stepwise(f, g)
(1, 0, 0, 2)

Empty intersection, returning the middle value

>>> f = np.array([[1,3], [2, 2.5]])
>>> g = np.array([[1,1], [2, 2]])
>>> pm.intersect_stepwise(f, g)
(None, None, None, 2.25)

	
pymarket.bids.demand_curves.supply_curve_from_bids(bids)

	Creates a supply curve from a set of selling bids.
It is the cumulative distribution of quantity
as a function of price.

	Parameters

	bids (pd.DataFrame) – Collection of all the bids in the market. The algorithm
filters only the selling bids.

	Returns

	
	supply_curve (np.ndarray) – Stepwise constant demand curve represented as a collection
of the N rightmost points of each interval (N-1 bids). It is stored
as a (N, 2) matrix where the first column is the x-coordinate
and the second column is the y-coordinate.
An extra point is added with x coordinate at infinity and
price at infinity to represent the end of the curve.

	index (np.ndarray) – The order of the identifier of each bid in the supply
curve.

Examples

A minimal example, selling bid is ignored:

>>> bm = pm.BidManager()
>>> bm.add_bid(1, 3, 0, False)
0
>>> bm.add_bid(2.1, 3, 3, True)
1
>>> sc, index = pm.supply_curve_from_bids(bm.get_df())
>>> sc
array([[1., 3.],
 [inf, inf]])
>>> index
array([0])

A larger example with reordering:

>>> bm = pm.BidManager()
>>> bm.add_bid(1, 3, 0, False)
0
>>> bm.add_bid(2.1, 3, 3, True)
1
>>> bm.add_bid(0.2, 1, 3, False)
2
>>> bm.add_bid(1.7, 6, 4, False)
3
>>> sc, index = pm.supply_curve_from_bids(bm.get_df())
>>> sc
array([[0.2, 1.],
 [1.2, 3.],
 [2.9, 6.],
 [inf, inf]])
>>> index
array([2, 0, 3])

 pymarket.bids.processing module

pymarket.bids.processing module

Implements processing techniques applied to bids before
mechanisms can use them

	
pymarket.bids.processing.merge_same_price(df, prec=5)

	Process a collection of bids by merging in each
side (buying or selling) all players with the same
price into a new user with their aggregated quantity

	Parameters

	
	df (pd.DataFrame) – Collection of bids to process

	prec (float [https://docs.python.org/3/library/functions.html#float]) – Number of digits to use after the comma
while comparing floating point prices
as equal.

	Returns

	
	dataframe_new (pd.DataFrame) – The new collection of bids where
players with the same price have
been merged into one.

	final_maping (dict) – Maping from new bids index to the
old bids index.

Examples

>>> bm = BidManager()
>>> bm.add_bid(0.3, 1, 0)
0
>>> bm.add_bid(0.7, 1, 1)
1
>>> bm.add_bid(2, 1, 2, False)
2
>>> bm.add_bid(1, 2.444446, 3, False)
3
>>> bm.add_bid(3, 2.444447, 4, False)
4
>>> bm.get_df()
 quantity price user buying time divisible
0 0.3 1.000000 0 True 0 True
1 0.7 1.000000 1 True 0 True
2 2.0 1.000000 2 False 0 True
3 1.0 2.444446 3 False 0 True
4 3.0 2.444447 4 False 0 True
>>> bids, index = pm.merge_same_price(bm.get_df(), 5)
>>> bids
 quantity price user buying time divisible
0 1.0 1.00000 5 True 0 True
1 2.0 1.00000 2 False 0 True
2 4.0 2.44445 6 False 0 True
>>> index
{0: [0, 1], 1: [2], 2: [3, 4]}

>>> mar = pm.Market()
>>> mar.accept_bid(250, 200, 0, True) # CleanRetail
0
>>> mar.accept_bid(300, 110, 1, True) # El4You
1
>>> mar.accept_bid(120, 100, 2, True) # EVcharge
2
>>> mar.accept_bid(80, 90, 3, True) # QualiWatt
3
>>> mar.accept_bid(40, 85, 4, True) # IntelliWatt
4
>>> mar.accept_bid(70, 75, 1, True) # El4You
5
>>> mar.accept_bid(60, 65, 0, True) # CleanRetail
6
>>> mar.accept_bid(45, 40, 4, True) # IntelliWatt
7
>>> mar.accept_bid(30, 38, 3, True) # QualiWatt
8
>>> mar.accept_bid(35, 31, 4, True) # IntelliWatt
9
>>> mar.accept_bid(25, 24, 0, True) # CleanRetail
10
>>> mar.accept_bid(10, 21, 1, True) # El4You
11

>>> mar.accept_bid(120, 0, 5, False) # RT
12
>>> mar.accept_bid(50, 0, 6, False) # WeTrustInWind
13
>>> mar.accept_bid(200, 15, 7, False) # BlueHydro
14
>>> mar.accept_bid(400, 30, 5, False) # RT
15
>>> mar.accept_bid(60, 32.5, 8, False) # KøbenhavnCHP
16
>>> mar.accept_bid(50, 34, 8, False) # KøbenhavnCHP
17
>>> mar.accept_bid(60, 36, 8, False) # KøbenhavnCHP
18
>>> mar.accept_bid(100,37.5, 9, False) # DirtyPower
19
>>> mar.accept_bid(70, 39, 9, False) # DirtyPower
20
>>> mar.accept_bid(50, 40, 9, False) # DirtyPower
21
>>> mar.accept_bid(70, 60, 5, False) # RT
22
>>> mar.accept_bid(45, 70, 5, False) # RT
23
>>> mar.accept_bid(50, 100, 10, False) # SafePeak
24
>>> mar.accept_bid(60, 150, 10, False) # SafePeak
25
>>> mar.accept_bid(50, 200, 10, False) # SafePeak
26
>>> bids, index = pm.merge_same_price(mar.bm.get_df())
>>> mar.bm.get_df()
 quantity price user buying time divisible
0 250 200.0 0 True 0 True
1 300 110.0 1 True 0 True
2 120 100.0 2 True 0 True
3 80 90.0 3 True 0 True
4 40 85.0 4 True 0 True
5 70 75.0 1 True 0 True
6 60 65.0 0 True 0 True
7 45 40.0 4 True 0 True
8 30 38.0 3 True 0 True
9 35 31.0 4 True 0 True
10 25 24.0 0 True 0 True
11 10 21.0 1 True 0 True
12 120 0.0 5 False 0 True
13 50 0.0 6 False 0 True
14 200 15.0 7 False 0 True
15 400 30.0 5 False 0 True
16 60 32.5 8 False 0 True
17 50 34.0 8 False 0 True
18 60 36.0 8 False 0 True
19 100 37.5 9 False 0 True
20 70 39.0 9 False 0 True
21 50 40.0 9 False 0 True
22 70 60.0 5 False 0 True
23 45 70.0 5 False 0 True
24 50 100.0 10 False 0 True
25 60 150.0 10 False 0 True
26 50 200.0 10 False 0 True

	
pymarket.bids.processing.new_player_id(index)

	Helper function for merge_same_price.
Creates a function that returns consecutive integers.

	Parameters

	index (int [https://docs.python.org/3/library/functions.html#int]) – First identifier to use for the
new fake players

	Returns

	Callable – Function that maps a list
of user ids into a new user id.

	Return type

	function

Examples

>>> id_gen = new_player_id(6)
>>> id_gen([3])
3
>>> id_gen([5])
5
>>> id_gen([0, 1])
6
>>> id_gen([2, 4])
7

 pymarket.datasets package

pymarket.datasets package

Top-level package for pymarket.

Submodules

	pymarket.datasets.uniform_bidders module

 pymarket.datasets.uniform_bidders module

pymarket.datasets.uniform_bidders module

	
pymarket.datasets.uniform_bidders.generate(cant_buyers, cant_sellers, offset_sellers=0, offset_buyers=0, r=None, eps=0.0001)

	Generates random bids. All the volumes and reservation
prices are sampled independently from a uniform distribution.
For sellers, the reservation price is shifted offset_seller
while for the buyers is shifter offset_buyers.
If there are two sellers or two buyers with the same price,
the reservation price of one of them is resampled until
in both side of the market, all players have different values.

The maximum number of players is limited by 1/eps, although the
parameter currently updates itself to allow the requested quantity
of buyers and sellers.

	Parameters

	
	cant_buyers (int [https://docs.python.org/3/library/functions.html#int]) – Number of buyers to generate. Has to be positiv

	cant_sellers (int [https://docs.python.org/3/library/functions.html#int]) – Number of sellers to generate. Has to be positive.

	offset_sellers (float [https://docs.python.org/3/library/functions.html#float]) – Quantity to shift the reservation price of sellers

	offset_buyers (float [https://docs.python.org/3/library/functions.html#float]) – Quantity to shift the reservation price of buyers

	r (optional, RandomState) – RandomState used to generate the data

	eps (optional, float [https://docs.python.org/3/library/functions.html#float]) – Minimum precision of the prices.

	Returns

	List of tuples of all the bids generated

	Return type

	bids

Examples

>>> r = np.random.RandomState(420)
>>> generate(2, 3, 1, 2, r, 0.1)
[(0.5, 2.8, 0, True, 0, True), (0.7000000000000001, 2.5, 1, True, 0, True), (0.6000000000000001, 1.2, 2, False, 0, True), (0.1, 1.7000000000000002, 3, False, 0, True), (0.2, 1.3, 4, False, 0, True)]

 pymarket.mechanisms package

pymarket.mechanisms package

Top-level package for pymarket.

Submodules

	pymarket.mechanisms.huang_auction module

	pymarket.mechanisms.mechanism module

	pymarket.mechanisms.muda_auction module

	pymarket.mechanisms.p2p_random module

 pymarket.mechanisms.huang_auction module

pymarket.mechanisms.huang_auction module

	
class pymarket.mechanisms.huang_auction.HuangAuction(bids, *args, **kwargs)

	Bases: pymarket.mechanisms.mechanism.Mechanism

Iinterface for the HuangAuction

	Parameters

	
	bids (pd.DataFrame) – Collection of bids to use in the market

	merge (bool [https://docs.python.org/3/library/functions.html#bool]) – Wheather to merge players with the
same price. Always True

	
pymarket.mechanisms.huang_auction.huang_auction(bids)

	Implements the auction described in [1]

	Parameters

	bids (pd.DataFrame) – Collection of all the bids to take
into account by the mechanism

	Returns

	
	trans (TransactionManager) – Collection of all the trasactions cleared
by the mechanism

	extra (dict) – Extra information provided by the mecanism.
Keys:
* price_sell: price at which sellers traded
* price_buy: price at which the buyers traded
* quantity_traded: the total quantity traded

Notes

[1] Huang, Pu, Alan Scheller–Wolf, and Katia Sycara. “Design of a multi–unit
double auction e–market.” Computational Intelligence 18.4 (2002): 596-617.

Examples

No trade because price setters don’t trade:

>>> bm = pm.BidManager()
>>> bm.add_bid(1, 3, 0)
0
>>> bm.add_bid(2, 1, 1)
1
>>> bm.add_bid(2, 2, 2, False)
2
>>> trans, extra = huang_auction(bm.get_df())
>>> trans.get_df()
Empty DataFrame
Columns: [bid, quantity, price, source, active]
Index: []
>>> extra
OrderedDict([('price_sell', 2.0), ('price_buy', 3.0), ('quantity_traded', 0)])

Adding small bids at the beginning, those can trade
because they don’t define de market price:

>>> bm.add_bid(0.3, 1, 3, False)
3
>>> bm.add_bid(0.2, 3.3, 4)
4
>>> trans, extra = huang_auction(bm.get_df())
>>> trans.get_df()
 bid quantity price source active
0 3 0.2 2.0 -1 False
1 4 0.2 3.0 -1 False
>>> extra
OrderedDict([('price_sell', 2.0), ('price_buy', 3.0), ('quantity_traded', 0.2)])

	
pymarket.mechanisms.huang_auction.update_quantity(quantity, gap)

	Implements the footnote in page 8 of [1],
where the long side updates their
trading quantities to match the short side.

	Parameters

	
	quantity (np.ndarray) – List of the quantities to be traded by each
player.

	gap (float [https://docs.python.org/3/library/functions.html#float]) – Difference between the short and long side

	Returns

	quantity – Updated list of quantities to be traded
by each player

	Return type

	np.ndarray

Notes

[1] Huang, Pu, Alan Scheller–Wolf, and Katia Sycara. “Design of a multi–unit
double auction e–market.” Computational Intelligence 18.4 (2002): 596-617.

Examples

All keep trading, with less quantity

>>> l, g = np.array([1, 2, 3]), 0.6
>>> update_quantity(l, g)
array([0.8, 1.8, 2.8])

The gap is to big for small trader:

>>> l,g = np.array([1, 0.5, 2]), 1.8
>>> update_quantity(l, g)
array([0.35, 0. , 1.35])

 pymarket.mechanisms.mechanism module

pymarket.mechanisms.mechanism module

	
class pymarket.mechanisms.mechanism.Mechanism(algo, bids, *args, merge=False, **kwargs)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Implements a standard interface for mechanisms

	
algo

	Algorithm to execute to solve the market.

	Type

	Callable

	
bids

	Collection of bids to use, with processing.

	Type

	pd.DataFrame

	
old_bids

	Collection of bids previous to proecssing.

	Type

	pd.DataFrame

	
maping

	Map from the new bids to the old bids

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
merge

	Wheather to merge different players with
the same price into one player. Useful for
algorithms that require players to have different
prices.

	Type

	bool [https://docs.python.org/3/library/functions.html#bool]

Examples

Run p2p mechanism channging parameters with
default parameters.

>>> bm = pm.BidManager()
>>> bm.add_bid(1, 3, 0)
0
>>> bm.add_bid(1, 0.5, 1)
1
>>> bm.add_bid(1, 1, 2, False)
2
>>> bm.add_bid(1, 2, 3, False)
3
>>> r = np.random.RandomState(420)
>>> p2p = pm.mechanisms.p2p_random
>>> mec = Mechanism(p2p, bm.get_df(), r=r)
>>> trans, extra = mec.run()
>>> extra
{'trading_list': [[(0, 3), (1, 2)]]}
>>> trans.get_df()
 bid quantity price source active
0 0 1 2.5 3 False
1 3 1 2.5 0 False
2 1 0 0.0 2 True
3 2 0 0.0 1 True

>>> r = np.random.RandomState(420)
>>> mec = Mechanism(p2p, bm.get_df(), r=r, p_coef=1)
>>> trans, extra = mec.run()
>>> extra
{'trading_list': [[(0, 3), (1, 2)]]}
>>> trans.get_df()
 bid quantity price source active
0 0 1 3.0 3 False
1 3 1 3.0 0 False
2 1 0 0.0 2 True
3 2 0 0.0 1 True

	
run()

	Runs the mechanisms

 pymarket.mechanisms.muda_auction module

pymarket.mechanisms.muda_auction module

	
class pymarket.mechanisms.muda_auction.MudaAuction(bids, *args, **kwargs)

	Bases: pymarket.mechanisms.mechanism.Mechanism

Interface for MudaAuction.

	Parameters

	bids – Collection of bids to run the mechanism
with.

	
pymarket.mechanisms.muda_auction.compute_fee(df, index, user, quantity, price)

	Computes the fee that a user has to pay by
not letting others trade

	Parameters

	
	df (pd.DataFrame) – Dataframe for one side of the market
resulting from reseting the index
of a bid dataframe, getting the bid
as the first column in addition to all the
standard ones.
Precondition: all bids should be willing
to trade at the trading price.

	index (int [https://docs.python.org/3/library/functions.html#int]) – Index of the last trading bid

	user (int [https://docs.python.org/3/library/functions.html#int]) – User identifier for which the fee should be computed

	quantity (float [https://docs.python.org/3/library/functions.html#float]) – Total quantity that the side of the
market trades

	price (float [https://docs.python.org/3/library/functions.html#float]) – Price at which the market clears.

	Returns

	fee – Fee that user ùser will have to pay
for not letting others trade as well.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

Examples

>>> bm = pm.BidManager()
>>> bm.add_bid(1, 1, 1)
0
>>> bm.add_bid(1, 2, 3)
1
>>> compute_fee(bm.get_df(), 0, 1, 1, 2.5)
0.5

	
pymarket.mechanisms.muda_auction.find_competitive_price(bids)

	Finds the unique trading price of the intersection
of supply and demand.

	Parameters

	bids (pd.DataFrame) – Collection of bids to process the
mechanism with.

	Returns

	price – The price at which the market clears.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

Notes

See also: intersect_stepwise.

	
pymarket.mechanisms.muda_auction.get_trading_bids(bids, quantity_traded)

	Finds the index of the rightmost trading
bid in a side of the market.
If the bid has to be split, it does so, and
returns the a new bid dataframe with two bids
in stade of the original one.

	Parameters

	
	bids (pd.DataFrame) – Collection of bids in one side of the market
Precondition: the dataframe is sorted by
price. Reverse order for buying and selling
side.

	quantity_traded (float [https://docs.python.org/3/library/functions.html#float]) – Total quantity that the side of the market
can trade.

	Returns

	
	bids_trading (pd.DataFrame) – Same as bids, but the index (which represent the
bid identifier) is added as the first column.
If a bid had to be splitted, that bid is replaced by two, with
the quantity in both summing up to the original
quantity. The index is reseted but both splitted
bids retain the oringal bid number in the column.

	bid_index (int) – Index of the worst bid that gets to trade.

Examples

No splitting needed

>>> bm = pm.BidManager()
>>> bm.add_bid(1, 3, 0)
0
>>> bm.add_bid(1, 2, 1)
1
>>> bm.get_df()
 quantity price user buying time divisible
0 1 3 0 True 0 True
1 1 2 1 True 0 True
>>> bids, index = get_trading_bids(bm.get_df(), 1)
>>> bids
 bid quantity price user buying time divisible
0 0 1 3 0 True 0 True
1 1 1 2 1 True 0 True
>>> index
0

Splitting needed:

>>> bm = pm.BidManager()
>>> bm.add_bid(1, 3, 0)
0
>>> bm.add_bid(1, 2, 1)
1
>>> bm.get_df()
 quantity price user buying time divisible
0 1 3 0 True 0 True
1 1 2 1 True 0 True
>>> bids, index = get_trading_bids(bm.get_df(), 0.3)
>>> bids
 bid quantity price user buying time divisible
0 0 0.3 3 0 True 0 True
1 0 0.7 3 0 True 0 True
2 1 1 2 1 True 0 True
>>> index
0

	
pymarket.mechanisms.muda_auction.muda(bids, r=None)

	Implements the Vickrey MUDA as described in [1].

The mechanism does not support two players in the
same side of the market with the same price.

	Parameters

	
	bids (pd.DataFrame) – Collection of bids to be used in the market

	r (np.random.RandomState) – A numpy random state generator. If not given,
a new one will be created and the output will
be random.

	Returns

	
	trans (TransactionManager) – A collection of all the transactions performed.

	extra (dict) – Dictionary with extra information provided by
the mechanism.
Keys:
* left: players in the left market
* right: players in the right market
* price_left: clearing price of the left market
* price_right: clearing price of the right_market
* fees: Fees that players have to pay to participate

Notes

[1] Segal-Halevi, Erel, Avinatan Hassidim, and Yonatan Aumann. “MUDA:
a truthful multi-unit double-auction mechanism.” Thirty-Second AAAI
Conference on Artificial Intelligence. 2018.

Examples

A case in which the market puts all the players
in the same side and no one trades.

>>> bm = pm.BidManager()
>>> bm.add_bid(1, 4, 0)
0
>>> bm.add_bid(1, 2, 1)
1
>>> bm.add_bid(1, 3, 2, False)
2
>>> bm.add_bid(1, 1, 3, False)
3
>>> r = np.random.RandomState(420)
>>> trans, extra = muda(bm.get_df(), r)
>>> extra
OrderedDict([('left', []), ('right', [0, 1, 2, 3]), ('price_left', inf), ('price_right', 2.5), ('fees', array([0., 0., 0., 0.]))])
>>> trans.get_df()
Empty DataFrame
Columns: [bid, quantity, price, source, active]
Index: []

A case in which there are 2 players in each side but the
cleared prices makes it impossible to trade:

>>> r = np.random.RandomState(69)
>>> trans, extra = muda(bm.get_df(), r)
>>> extra
OrderedDict([('left', [1, 3]), ('right', [0, 2]), ('price_left', 1.5), ('price_right', 3.5), ('fees', array([0., 0., 0., 0.]))])
>>> trans.get_df()
Empty DataFrame
Columns: [bid, quantity, price, source, active]
Index: []

A case with trade:

>>> bm.add_bid(1, 5, 4)
4
>>> r = np.random.RandomState(69)
>>> trans, extra = muda(bm.get_df(), r)
>>> trans.get_df()
 bid quantity price source active
0 3 1 3.5 -1 False
1 4 1 3.5 -1 False
2 2 1 3.0 -1 False
3 0 1 3.0 -1 False
>>> extra
OrderedDict([('left', [1, 3, 4]), ('right', [0, 2]), ('price_left', 3.0), ('price_right', 3.5), ('fees', array([0., 0., 0., 0., 0.]))])

	
pymarket.mechanisms.muda_auction.solve_market_side_with_exogenous_price(bids, price, fees)

	Clears the market based on an external price.
First it removes all biders that are not willing
to trade at the given price, and then it fits
the best allocation.
Fees are calculated based on users that were
willing but could not trade.

	Parameters

	
	bids (pd.DataFrame) – Collection of bids to clear the market with

	price (float [https://docs.python.org/3/library/functions.html#float]) – Price at which all the trades will ocurr

	fees (list of floats) – List of all the fees that players will have to pay.
It gets updated.

	Returns

	
	trans (TransactionManager) – Collection of the transactions that clear the market

	fees (list of floats) – Fees to be paid by each player. Is a list where
the fee of player with id u is located at fees[u].

Examples

>>> bm = pm.BidManager()
>>> bm.add_bid(1, 3, 0)
0
>>> bm.add_bid(1, 0.5, 1)
1
>>> bm.add_bid(1, 1, 2, False)
2
>>> bm.add_bid(1, 2, 3, False)
3
>>> fees = [0, 0, 0, 0]
>>> trans, fees = solve_market_side_with_exogenous_price(bm.get_df(),2.5, fees)
>>> trans.get_df()
 bid quantity price source active
0 0 1 2.5 -1 False
1 2 1 2.5 -1 False
>>> fees
[0, 0, 0.5, 0]

 pymarket.mechanisms.p2p_random module

pymarket.mechanisms.p2p_random module

	
class pymarket.mechanisms.p2p_random.P2PTrading(bids, *args, **kwargs)

	Bases: pymarket.mechanisms.mechanism.Mechanism

Interface for P2PTrading.

	Parameters

	bids (pd.DataFrame) – Collections of bids to use

	
pymarket.mechanisms.p2p_random.p2p_random(bids, p_coef=0.5, r=None)

	Computes all the trades using a P2P random trading
process inspired in [1].

	Parameters

	
	bids (pd.DataFrame) – Collection of bids that will trade.
Precondition: a user participates only in one
side of the market, i.e, it cannot sell and buy in
the same run.

	p_coef (float [https://docs.python.org/3/library/functions.html#float]) – coefficient to calculate the trading price as a convex
combination of the price of the seller and the price of
the buyer. If 1, the seller gets all the profit and if 0,
the buyer gets all the profit.

	r (np.random.RandomState) – Random state to generate stochastic values. If None,
then the outcome of the market will be different on
each run.

	Returns

	
	trans (TransactionManger) – Collection of all the transactions that ocurred in the market

	extra (dict) – Extra information provided by the mechanisms.
Keys:

	trading_list: list of list of tuples of all the pairs that traded in each round.

Notes

[1] Blouin, Max R., and Roberto Serrano. “A decentralized market with
common values uncertainty: Non-steady states.” The Review of Economic
Studies 68.2 (2001): 323-346.

Examples

>>> bm = pm.BidManager()
>>> bm.add_bid(1, 3, 0)
0
>>> bm.add_bid(1, 0.5, 1)
1
>>> bm.add_bid(1, 1, 2, False)
2
>>> bm.add_bid(1, 2, 3, False)
3
>>> r = np.random.RandomState(420)
>>> trans, extra = p2p_random(bm.get_df(), r=r)
>>> extra
{'trading_list': [[(0, 3), (1, 2)]]}
>>> trans.get_df()
 bid quantity price source active
0 0 1 2.5 3 False
1 3 1 2.5 0 False
2 1 0 0.0 2 True
3 2 0 0.0 1 True

 pymarket.plot package

pymarket.plot package

Submodules

	pymarket.plot.demand_curves module

	pymarket.plot.huang module

	pymarket.plot.muda module

	pymarket.plot.trades module

 pymarket.plot.demand_curves module

pymarket.plot.demand_curves module

	
pymarket.plot.demand_curves.plot_demand_curves(bids, ax=None, margin_X=1.2, margin_Y=1.2)

	Plots the demand curves.
If ax is none, creates a new figure

	Parameters

	
	bids – Collection of bids to be used

	ax (TODO, optional) – (Default value = None)

	margin_X – (Default value = 1.2)

	margin_Y – (Default value = 1.2)

 pymarket.plot.huang module

pymarket.plot.huang module

	
pymarket.plot.huang.plot_huang_auction(bids, price_sell, price_buy, quantity_traded, ax=None)

	Plots the results of the huang auction with some of the characteristics
of such auction

	Parameters

	
	(pandas dataframe) (bids) – Table with all the bids submitted

	(list) (price_buy) – The price at which all sellers sell

	(list) – The price at which all players buy

	traded (float) (quantity) – The total quantity traded

	Returns

	axe – The axe in which the figure was plotted.

	Return type

	matplotlib.axes._subplots.AxesSubplot

 pymarket.plot.muda module

pymarket.plot.muda module

	
pymarket.plot.muda.plot_both_side_muda(bids, left_players, right_players, left_price, right_price, FIGSIZE=(12, 6), **kwargs)

	Plots the two sides in which MUDA divides the trades with the
corresponding prices

	Parameters

	
	(pandas dataframe) (bids) – Table with all the bids submitted

	(list) (right) – List of players in the left side

	(list) – List of players in the right side

	(float) (right_price) – Price obtained from the left side to be used in the right side

	(float) – Price obtained from the right side to be used in the left side

	(tuple) (FIGSIZE) – Tuple (width, height) of the figure to be created

	Returns

	axe – The axe in which the figure was plotted.

	Return type

	matplotlib.axes._subplots.AxesSubplot

 pymarket.plot.trades module

pymarket.plot.trades module

	
pymarket.plot.trades.plot_trades_as_graph(bids, transactions, ax=None)

	Plots all the bids as a bipartit graph
with buyers and trades and an edge between
each pair that traded

	Parameters

	
	bids (pd.DataFrame) – Collection of bids to be used

	transactions (pd.DataFrame) – Collection of transactions to be used

	ax (pyplot.axe) – The axe in which the figure should be ploted

	Returns

	axe – The axe in which the figure was plotted.

	Return type

	matplotlib.axes._subplots.AxesSubplot

 pymarket.statistics package

pymarket.statistics package

Submodules

	pymarket.statistics.maximum_aggregated_utility module

	pymarket.statistics.maximum_traded_volume module

	pymarket.statistics.profits module

	pymarket.statistics.statistics module

 pymarket.statistics.maximum_aggregated_utility module

pymarket.statistics.maximum_aggregated_utility module

	
pymarket.statistics.maximum_aggregated_utility.maximum_aggregated_utility(bids, *args, reservation_prices=None)

	Maximizes the total welfare

	Parameters

	
	bids (pd.DataFrame) – Collection of bids

	reservation_prices (dict of floats or None [https://docs.python.org/3/library/constants.html#None], (Default value = None)) – A maping from user ids to reservation prices. If no reservation
price for a user is given, his bid will be assumed to be his
true value.

	Returns

	
	status (str) – Status of the optimization problem. Desired output is ‘Optimal’

	objective (float) – Maximum aggregated utility that can be obtained

	variables (dict) – A set of values achieving the objective. Maps a pair of bids
to the quantity traded by them.

Examples

>>> bm = pm.BidManager()
>>> bm.add_bid(1, 3, 0)
0
>>> bm.add_bid(1, 2, 1)
1
>>> bm.add_bid(1.5, 1, 2, False)
2
>>> s, o, v = maximum_aggregated_utility(bm.get_df())
>>> s
'Optimal'
>>> o
2.5
>>> v
OrderedDict([((0, 2), 1.0), ((1, 2), 0.5)])

If in reality the seller had 0 value for his commodity,
the social welfare will be 1.5 units larger

>>> bm = pm.BidManager()
>>> bm.add_bid(1, 3, 0)
0
>>> bm.add_bid(1, 2, 1)
1
>>> bm.add_bid(1.5, 1, 2, False)
2
>>> rp = {2: 0}
>>> s, o, v = maximum_aggregated_utility(bm.get_df(),
... reservation_prices=rp)
>>> s
'Optimal'
>>> o
4.0
>>> v
OrderedDict([((0, 2), 1.0), ((1, 2), 0.5)])

	
pymarket.statistics.maximum_aggregated_utility.percentage_welfare(bids, transactions, reservation_prices=None, **kwargs)

	Percentage of the total welfare that could be achieved
calculated based on the transaction lists

	Parameters

	
	(pandas dataframe) (transactions) – Table with all the submited bids

	(pandas dataframe) – Table with all the transactions that ocurred in the market

	(dict, optional) (reservation_prices) – Reservation prices of the different participants. If None, the bids
will be assumed to be the truthfull values.

	Returns

	ratio – The ratio of the maximum social welfare achieved by the
collection of transactions.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

Examples

Only bid 0 and 2 trade. That represents a net utility of 2
which is 80% of the total max utility 2.5

>>> tm = pm.TransactionManager()
>>> bm = pm.BidManager()
>>> bm.add_bid(1, 3, 0)
0
>>> bm.add_bid(1, 2, 1)
1
>>> bm.add_bid(1.5, 1, 2, False)
2
>>> tm.add_transaction(0, 1, 2, 2, False)
0
>>> tm.add_transaction(2, 1, 2, 0, False)
1
>>> percentage_welfare(bm.get_df(), tm.get_df())
0.8

 pymarket.statistics.maximum_traded_volume module

pymarket.statistics.maximum_traded_volume module

	
pymarket.statistics.maximum_traded_volume.maximum_traded_volume(bids, *args, reservation_prices={})

	
	Parameters

	
	bids (pd.DataFrame) – Collections of bids

	reservation_prices (dict of floats or None [https://docs.python.org/3/library/constants.html#None], (Default value = None)) – A maping from user ids to reservation prices. If no reservation
price for a user is given, his bid will be assumed to be his
true value.

	Returns

	
	status (str) – Status of the optimization problem. Desired output is ‘Optimal’

	objective (float) – Maximum tradable volume that can be obtained

	variables (dict) – A set of values achieving the objective. Maps a pair of bids
to the quantity traded by them.

Examples

>>> bm = pm.BidManager()
>>> bm.add_bid(1, 3, 0)
0
>>> bm.add_bid(1, 2, 1)
1
>>> bm.add_bid(1.5, 1, 2, False)
2
>>> s, o, v = maximum_traded_volume(bm.get_df())
>>> s
'Optimal'
>>> o
1.5
>>> v
OrderedDict([((0, 2), 0.5), ((1, 2), 1.0)])

	
pymarket.statistics.maximum_traded_volume.percentage_traded(bids, transactions, reservation_prices={}, **kwargs)

	Calculates from the transaction dataframe
the percentage of the total maximum possible
traded quantity.

	Parameters

	
	(pandas dataframe) (transactions) – Table with all the submited bids

	(pandas dataframe) – Table with all the transactions that ocurred in the market

	(dict, optional) (reservation_prices) – Reservation prices of the different participants. If None, the bids
will be assumed to be the truthfull values.

	Returns

	ratio – The ratio of the maximum social welfare achieved by the
collection of transactions.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

Examples

Only bid 0 and 2 trade 1 unit. That represents
the 66% of all that could have been traded.

>>> tm = pm.TransactionManager()
>>> bm = pm.BidManager()
>>> bm.add_bid(1, 3, 0)
0
>>> bm.add_bid(1, 2, 1)
1
>>> bm.add_bid(1.5, 1, 2, False)
2
>>> tm.add_transaction(0, 1, 2, 2, False)
0
>>> tm.add_transaction(2, 1, 2, 0, False)
1
>>> percentage_traded(bm.get_df(), tm.get_df())
0.6666666666666666

 pymarket.statistics.profits module

pymarket.statistics.profits module

	
pymarket.statistics.profits.calculate_profits(bids, transactions, reservation_prices=None, fees=None, **kwargs)

	Extras from the transactions and the bids the profit
of each player and the market maker

	Parameters

	
	bids (pd.DataFrame) – Collections of bids to be used

	transactions (pd.DataFrame) – Collection of transactions to be taken into account

	reservation_prices (dict [https://docs.python.org/3/library/stdtypes.html#dict], (Default value = None)) – Maping between users and their reservation prices. If None,
it is assumed that each user bided truthfully and the
information is extracted from the bid.

	fees (np.ndarray, (Default value = None)) – List of fees that each user has to pay to trade in the market.

	Returns

	profit – A dictionary with three values:
* player_bid: A list with the profits of each user
using their bids as reservation prices
* player_reservation: Same as above but using
their reservation prices, if none are provided,
it is the same as player_bid
* market: profit of the market maker

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

Examples

>>> tm = pm.TransactionManager()
>>> bm = pm.BidManager()
>>> bm.add_bid(1, 3, 0)
0
>>> bm.add_bid(1, 2, 1)
1
>>> bm.add_bid(1.5, 1, 2, False)
2
>>> tm.add_transaction(0, 1, 2, 2, False)
0
>>> tm.add_transaction(2, 1, 2, 0, False)
1
>>> rp = {2: 0}
>>> profits = calculate_profits(bm.get_df(), tm.get_df(),
... reservation_prices=rp)
>>> profits['player_bid']
array([1., 0., 1.])
>>> profits['player_reservation']
array([1., 0., 2.])
>>> profits['market']
0.0

	
pymarket.statistics.profits.get_gain(row)

	Finds the gain of the row

	Parameters

	row (pandas row) – Row obtained by merging a transaction with a
bid dataframe

	Returns

	The gain obtained by the row

	Return type

	gain

 pymarket.statistics.statistics module

pymarket.statistics.statistics module

 pymarket.transactions package

pymarket.transactions package

Submodules

	pymarket.transactions.processing module

	pymarket.transactions.transactions module

 pymarket.transactions.processing module

pymarket.transactions.processing module

Some processing functions to deal with transactions

	
pymarket.transactions.processing.split_transactions_merged_players(transactions, bids, maping, fees=None)

	Splits the transactions of a market that used merged bids into the original
bids
Uses a proportional split, based on the offered (or asked) quantity by
each player.

	Parameters

	
	transactions (TransactionManager) – the transactions manager returned by the mechanism.

	bids (pandas dataframe) – the original bid dataframe where some players might be repeated

	maping (pandas dataframe) – A maping between the bids in the transaction dataframe and the original
bids.

	Returns

	
	transactions_splited (pandas dataframe) – the result of splitting each merged bid in the transactions
dataframe

	fees (dict or None) – dictionary obtained by splitting the fees equal to the transactions

Examples

>>> bm = pm.BidManager()
>>> tm = pm.TransactionManager()
>>> bm.add_bid(1, 1, 0)
0
>>> bm.add_bid(2, 1, 1)
1
>>> tm.add_transaction(0, 1, 1, -1, False)
0
>>> tm_2 = split_transactions_merged_players(tm, bm.get_df(), {0:[0,1]})
>>> tm_2.get_df()
 bid quantity price source active
0 0 0.333333 1 -1 False
1 1 0.666667 1 -1 False

 pymarket.transactions.transactions module

pymarket.transactions.transactions module

	
class pymarket.transactions.transactions.TransactionManager

	Bases: object [https://docs.python.org/3/library/functions.html#object]

An interaface to store and
manage all transactions.
Transactions are the minimal unit to represent
the outcome of a market.

	
name_col

	Name of the columns to use in the dataframe
returned.

	Type

	list of str

	
n_trans

	Number of transactions currently in the Manager

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
trans

	List of the actual transactions available

	Type

	list of tuples

	
add_transaction(bid, quantity, price, source, active)

	Add a transaction to the transactions list

	Parameters

	
	bid (int [https://docs.python.org/3/library/functions.html#int]) – Unique identifier of the bid

	quantity (float [https://docs.python.org/3/library/functions.html#float]) – transacted quantity

	price (float [https://docs.python.org/3/library/functions.html#float]) – transacted price

	source (int [https://docs.python.org/3/library/functions.html#int]) – Identifier of the second party in the trasaction,
-1 if there is no clear second party, such as
in a double auction.

	active – True` if the bid is still active after the
transaction.

	Returns

	trans_id – id of the added transaction, -1 if fails

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

Examples

>>> tm = pm.TransactionManager()
>>> tm.add_transaction(1, 0.5, 2.1, -1, False)
0
>>> tm.trans
[(1, 0.5, 2.1, -1, False)]
>>> tm.n_trans
1

	
get_df()

	Returns the transaction dataframe

	Returns

	df – A pandas dataframe representing all the transactions
stored.

	Return type

	pd.DataFrame

Examples

>>> tm = pm.TransactionManager()
>>> tm.add_transaction(1, 0.5, 2.1, -1, False)
0
>>> tm.add_transaction(5, 0, 0, 3, True)
1
>>> tm.get_df()
 bid quantity price source active
0 1 0.5 2.1 -1 False
1 5 0.0 0.0 3 True

	
merge(other)

	Merges two transaction managers with each other
There are no checks on whether the new
TransactionManger is consisten after the
merge.

	Parameters

	other (TransactionManager) – A different transaction manager to merge
with

	Returns

	trans – A new transaction Manager
with the transactions of the two.

	Return type

	TransactionManager

Examples

>>> tm_1 = pm.TransactionManager()
>>> tm_1.add_transaction(1, 0.5, 2.1, -1, False)
0
>>> tm_2 = pm.TransactionManager()
>>> tm_2.add_transaction(5, 0, 0, 3, True)
0
>>> tm_3 = tm_1.merge(tm_2)
>>> tm_3.get_df()
 bid quantity price source active
0 1 0.5 2.1 -1 False
1 5 0.0 0.0 3 True

	
name_col = ['bid', 'quantity', 'price', 'source', 'active']

	

 pymarket.utils package

pymarket.utils package

Top-level package for pymarket.

Submodules

	pymarket.utils.decorators module

 pymarket.utils.decorators module

pymarket.utils.decorators module

	
pymarket.utils.decorators.check_equal_price(f)

	CHeck wheather there are two bids
with the same price in the same side
and in that case rises an error

	Parameters

	f ((function, mechanisms)) – Mechanisms to be tested

 pymarket.conftest module

pymarket.conftest module

	
pymarket.conftest.add_namespace(doctest_namespace)

	

 pymarket.market module

pymarket.market module

	
class pymarket.market.Market

	Bases: object [https://docs.python.org/3/library/functions.html#object]

General interface for calling the different
market mechanisms

	Parameters

	
	bm (BidManager) – All bids are stored in the bid manager

	transactions (TransactionManager) – The set of all tranasactions in the Market.
This argument get updated after the market ran.

	extra (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Extra information provided by the mechanisms.
Gets updated after an execution of the run.

Examples

If everyone is buying, the transaction
dataframe is returned empty as well as the extra
dictionary.

>>> mar = pm.Market()
>>> mar.accept_bid(1, 2, 0, True)
0
>>> mar.accept_bid(2, 3, 1, True)
1
>>> trans, extra = mar.run('huang')
>>> extra
OrderedDict()
>>> trans.get_df()
Empty DataFrame
Columns: [bid, quantity, price, source, active]
Index: []

If everyone is buying, the transaction
dataframe is returned empty as well as the extra
dictionary.

>>> mar = pm.Market()
>>> mar.accept_bid(1, 2, 0, False)
0
>>> mar.accept_bid(2, 3, 1, False)
1
>>> trans, extra = mar.run('huang')
>>> extra
OrderedDict()
>>> trans.get_df()
Empty DataFrame
Columns: [bid, quantity, price, source, active]
Index: []

A very simple auction where nobody trades

>>> mar = pm.Market()
>>> mar.accept_bid(1, 3, 0, True)
0
>>> mar.accept_bid(1, 2, 1, False)
1
>>> trans, extra = mar.run('huang')
>>> extra
OrderedDict([('price_sell', 2.0), ('price_buy', 3.0), ('quantity_traded', 0)])
>>> trans.get_df()
Empty DataFrame
Columns: [bid, quantity, price, source, active]
Index: []

	
accept_bid(*args)

	Adds a bid to the bid manager

	Parameters

	*args – List of parameters requried to create a bid.
See BidManager documentation.

	Returns

	bid_id – The id of the new created bid in the BidManger

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
plot()

	Plots both demand curves

	
plot_method(method, ax=None)

	Plots a figure specific for a given method,
reflecting the main characteristics of its solution.
It requires that the algorithm has run before.

	Parameters

	
	method (str [https://docs.python.org/3/library/stdtypes.html#str]) – One of p2p, muda, huang

	ax – (Default value = None)

	
run(algo, *args, **kwargs)

	Runs a given mechanism with the current
bids

	Parameters

	
	algo (str [https://docs.python.org/3/library/stdtypes.html#str]) –
	One of:

	
	’p2p’

	’huang’

	’muda’

	*args – Extra arguments to pass to the algorithm.

	**kwargs – Extra keyworded arguments to pass to the algorithm

	Returns

	
	transactions (TransactionManager) – The transaction manager holding all the transactions
returned by the mechanism.

	extra (dict) – Dictionary with extra information returned by the
executed method.

	
statistics(reservation_prices=None, exclude=[])

	Computes the standard statistics of the market

	Parameters

	
	(dict, optional) (reservation_prices) – the reservation prices of the users. If there is none,
the bid will be assumed truthfull

	reservation_prices – (Default value = None)

	exclude – List of mechanisms to ignore will comuting statistics

	Returns

	stats –

	Dictionary with the differnt statistics. Currently:

	
	percentage_welfare

	percentage_traded

	profits

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

 Contributing

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit
helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/gus0k/pymarket/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help
wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

pymarket could always use more documentation, whether as part of the
official pymarket docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/gus0k/pymarket/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up pymarket for local development.

	Fork the pymarket repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/pymarket.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv pymarket
$ cd pymarket/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox:

$ flake8 pymarket tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.7, 3.4, 3.5 and 3.6, and for PyPy. Check
https://travis-ci.org/gus0k/pymarket/pull_requests
and make sure that the tests pass for all supported Python versions.

Deploying

A reminder for the maintainers on how to deploy.
Make sure all your changes are committed (including an entry in HISTORY.rst).
Then run:

$ bumpversion patch # possible: major / minor / patch
$ git push
$ git push --tags

Travis will then deploy to PyPI if tests pass.

 Credits

Credits

Team

	Diego Kiedanski

	Daniel Kofman

	José Horta

Development Lead

	Diego Kiedanki <gusok@protonmail.com>

Contributors

None yet. Why not be the first?

 References

References

Algorithms Used

	Segal-Halevi, Erel, Avinatan Hassidim, and Yonatan Aumann. “MUDA: a truthful multi-unit double-auction mechanism.” Thirty-Second AAAI Conference on Artificial Intelligence. 2018.

	Huang, Pu, Alan Scheller–Wolf, and Katia Sycara. “Design of a multi–unit double auction e–market.” Computational Intelligence 18.4 (2002): 596-617.

	Blouin, Max R., and Roberto Serrano. “A decentralized market with common values uncertainty: Non-steady states.” The Review of Economic Studies 68.2 (2001): 323-346.

 Python Module Index

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pymarket	

 	
 	
 pymarket.bids	

 	
 	
 pymarket.bids.bids	

 	
 	
 pymarket.bids.demand_curves	

 	
 	
 pymarket.bids.processing	

 	
 	
 pymarket.conftest	

 	
 	
 pymarket.datasets	

 	
 	
 pymarket.datasets.uniform_bidders	

 	
 	
 pymarket.market	

 	
 	
 pymarket.mechanisms	

 	
 	
 pymarket.mechanisms.huang_auction	

 	
 	
 pymarket.mechanisms.mechanism	

 	
 	
 pymarket.mechanisms.muda_auction	

 	
 	
 pymarket.mechanisms.p2p_random	

 	
 	
 pymarket.plot	

 	
 	
 pymarket.plot.demand_curves	

 	
 	
 pymarket.plot.huang	

 	
 	
 pymarket.plot.muda	

 	
 	
 pymarket.plot.trades	

 	
 	
 pymarket.statistics	

 	
 	
 pymarket.statistics.maximum_aggregated_utility	

 	
 	
 pymarket.statistics.maximum_traded_volume	

 	
 	
 pymarket.statistics.profits	

 	
 	
 pymarket.statistics.statistics	

 	
 	
 pymarket.transactions	

 	
 	
 pymarket.transactions.processing	

 	
 	
 pymarket.transactions.transactions	

 	
 	
 pymarket.utils	

 	
 	
 pymarket.utils.decorators	

 Index

Index

 A
 | B
 | C
 | D
 | F
 | G
 | H
 | I
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U

A

 	
 	accept_bid() (pymarket.market.Market method)

 	add_bid() (pymarket.bids.bids.BidManager method)

 	
 	add_namespace() (in module pymarket.conftest)

 	add_transaction() (pymarket.transactions.transactions.TransactionManager method)

 	algo (pymarket.mechanisms.mechanism.Mechanism attribute)

B

 	
 	BidManager (class in pymarket.bids.bids)

 	
 	bids (pymarket.bids.bids.BidManager attribute)

 	(pymarket.mechanisms.mechanism.Mechanism attribute)

C

 	
 	calculate_profits() (in module pymarket.statistics.profits)

 	check_equal_price() (in module pymarket.utils.decorators)

 	
 	col_names (pymarket.bids.bids.BidManager attribute), [1]

 	compute_fee() (in module pymarket.mechanisms.muda_auction)

D

 	
 	demand_curve_from_bids() (in module pymarket.bids.demand_curves)

F

 	
 	find_competitive_price() (in module pymarket.mechanisms.muda_auction)

G

 	
 	generate() (in module pymarket.datasets.uniform_bidders)

 	get_df() (pymarket.bids.bids.BidManager method)

 	(pymarket.transactions.transactions.TransactionManager method)

 	
 	get_gain() (in module pymarket.statistics.profits)

 	get_trading_bids() (in module pymarket.mechanisms.muda_auction)

 	get_value_stepwise() (in module pymarket.bids.demand_curves)

H

 	
 	huang_auction() (in module pymarket.mechanisms.huang_auction)

 	
 	HuangAuction (class in pymarket.mechanisms.huang_auction)

I

 	
 	intersect_stepwise() (in module pymarket.bids.demand_curves)

M

 	
 	maping (pymarket.mechanisms.mechanism.Mechanism attribute)

 	Market (class in pymarket.market)

 	maximum_aggregated_utility() (in module pymarket.statistics.maximum_aggregated_utility)

 	maximum_traded_volume() (in module pymarket.statistics.maximum_traded_volume)

 	Mechanism (class in pymarket.mechanisms.mechanism)

 	
 	merge (pymarket.mechanisms.mechanism.Mechanism attribute)

 	merge() (pymarket.transactions.transactions.TransactionManager method)

 	merge_same_price() (in module pymarket.bids.processing)

 	muda() (in module pymarket.mechanisms.muda_auction)

 	MudaAuction (class in pymarket.mechanisms.muda_auction)

N

 	
 	n_bids (pymarket.bids.bids.BidManager attribute)

 	n_trans (pymarket.transactions.transactions.TransactionManager attribute)

 	
 	name_col (pymarket.transactions.transactions.TransactionManager attribute), [1]

 	new_player_id() (in module pymarket.bids.processing)

O

 	
 	old_bids (pymarket.mechanisms.mechanism.Mechanism attribute)

P

 	
 	p2p_random() (in module pymarket.mechanisms.p2p_random)

 	P2PTrading (class in pymarket.mechanisms.p2p_random)

 	percentage_traded() (in module pymarket.statistics.maximum_traded_volume)

 	percentage_welfare() (in module pymarket.statistics.maximum_aggregated_utility)

 	plot() (pymarket.market.Market method)

 	plot_both_side_muda() (in module pymarket.plot.muda)

 	plot_demand_curves() (in module pymarket.plot.demand_curves)

 	plot_huang_auction() (in module pymarket.plot.huang)

 	plot_method() (pymarket.market.Market method)

 	plot_trades_as_graph() (in module pymarket.plot.trades)

 	pymarket (module)

 	pymarket.bids (module)

 	pymarket.bids.bids (module)

 	pymarket.bids.demand_curves (module)

 	pymarket.bids.processing (module)

 	pymarket.conftest (module)

 	pymarket.datasets (module)

 	pymarket.datasets.uniform_bidders (module)

 	pymarket.market (module)

 	
 	pymarket.mechanisms (module)

 	pymarket.mechanisms.huang_auction (module)

 	pymarket.mechanisms.mechanism (module)

 	pymarket.mechanisms.muda_auction (module)

 	pymarket.mechanisms.p2p_random (module)

 	pymarket.plot (module)

 	pymarket.plot.demand_curves (module)

 	pymarket.plot.huang (module)

 	pymarket.plot.muda (module)

 	pymarket.plot.trades (module)

 	pymarket.statistics (module)

 	pymarket.statistics.maximum_aggregated_utility (module)

 	pymarket.statistics.maximum_traded_volume (module)

 	pymarket.statistics.profits (module)

 	pymarket.statistics.statistics (module)

 	pymarket.transactions (module)

 	pymarket.transactions.processing (module)

 	pymarket.transactions.transactions (module)

 	pymarket.utils (module)

 	pymarket.utils.decorators (module)

R

 	
 	run() (pymarket.market.Market method)

 	(pymarket.mechanisms.mechanism.Mechanism method)

S

 	
 	solve_market_side_with_exogenous_price() (in module pymarket.mechanisms.muda_auction)

 	split_transactions_merged_players() (in module pymarket.transactions.processing)

 	
 	statistics() (pymarket.market.Market method)

 	supply_curve_from_bids() (in module pymarket.bids.demand_curves)

T

 	
 	trans (pymarket.transactions.transactions.TransactionManager attribute)

 	
 	TransactionManager (class in pymarket.transactions.transactions)

U

 	
 	update_quantity() (in module pymarket.mechanisms.huang_auction)

_images/Huang_5_0.png
Price

— Demand
— supply.

7
Quantity

_images/Huang_7_0.png
Price

— Supply.
- Sellprice

=~ Buy price

-~ Quantity traded
Market profit

[3 @
Quantity

_images/Efficiency_and_performance_10_0.png
2

E

2

% Total welfare

0975

0350

0325

0300

0875

0850

0825

0800

0775

% Total traded

039

038

097

036

035

034

]

@

@

® 100 130
Number of Players

10

180

180

B

o

@

@ 10 130
Number of Players

180

180

180

]

@

@

® 100 130
Number of Players

10

180

180

_images/Efficiency_and_performance_6_0.png
Elapsed Time (s)

12

10

08

08

04

02

performance

2

]

@ 10 120
Number of Players

140

160

180

_images/MUDA_5_0.png
Price

— Demand
— supply.

7
Quantity

_images/MUDA_7_0.png
price

Left players Right players
— Demand — — Demand
— supply — supply
Trading price determined by right players Trading price determined by left players
o B

Price

] 5 3
Quantity

o0 o5 10 15 20 25 30 35
Quantity

_images/P2P_10_1.png
© e o © o0 o

nav.xhtml

 Table of Contents

 		
 Welcome to PyMarket’s documentation!

 		
 Installation

 		
 Stable release

 		
 Dependencies

 		
 From sources

 		
 Running Tests

 		
 Getting started

 		
 Submitting two bids in the market

 		
 The bids dataframe

 		
 Running the market

 		
 The transactions dataframe

 		
 The extra information

 		
 Statistics

 		
 Adding an extra bid

 		
 Examples

 		
 P2P

 		
 Creates new market

 		
 Orignal supply and demand curves

 		
 Trades among participants

 		
 Analysis of the results

 		
 Statistics

 		
 MUDA

 		
 Creates new market

 		
 Orignal supply and demand curves

 		
 Supply and demand curves after market is splitted

 		
 Analysis of the Left Side

 		
 Analysis of the Right Side

 		
 Statistics

 		
 Huang

 		
 Creates new market

 		
 Orignal supply and demand curves

 		
 Supply and demand curves after market is splitted

 		
 Analysis of the trade

 		
 Statistics

 		
 Efficiency and Performance

 		
 Create a set of markets with varying number of participants

 		
 Run the diferent markets

 		
 Obtains the statistics (optimization problems have to be solved)

 		
 Plots the results

 		
 Creating a new mechanism

 		
 The uniform price mechanism

 		
 Implementing the mechanism

 		
 Wrapping the algorithm as a mechanism

 		
 Adding the new mechanism to the list of available mechanism of the market

 		
 Running the new mechanism and comparing it with Huang’s and P2P

 		
 pymarket

 		
 pymarket package

 		
 Subpackages

 		
 Submodules

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Deploying

 		
 Credits

 		
 Team

 		
 Development Lead

 		
 Contributors

 		
 References

 		
 Algorithms Used

_static/ajax-loader.gif

_images/P2P_8_0.png
Price

— Demand
